Researched and written by Jan Hofmeister and Roman Civin.
Introduction
If you're overwhelmed by all the information on different machine translation (MT) options and cost factors, don't stress, we've got you. But don't just take our word for it - use the handy interactive calculator tool to break down costs based on your unique needs. Plug in your numbers and get a quick custom cost analysis - using a comparable denominator.
To understand machine translation costs, let’s break it down to simple options:
Generic MT engines are easy to use, but quality varies.
MT traditionally customized via regular pre-training tailored to your business slang gives better translations but costs more upfront.
Adaptive MT automatically improves over time based on your feedback and is more flexible than custom engines.
Large language models (LLMs) are cutting-edge but still new and need strong guidance for best results.
Combining LLMs with neural MT (NMT) is where it's at for top efficiency.
Fixed and variable costs must be considered when choosing the right machine translation method for your budget. If more questions arise, don't hesitate to seek Nimdzi's expert advice to optimize your strategy.
Insights
Traditional customized NMT is facing a challenge because of its scaling limitations. Adaptive MT is the current frontier.
Companies often spend more on customized NMT than they are aware of.
To comprehend the cost implications of MT, stakeholders must consider a spectrum of fixed and variable expenses.
The complexity associated with customized NMT is justified only in cases where it cannot be replaced by newer solutions.
Think fixed AND variable costs
Explaining the costs of MT engine customization involves both fixed and variable costs. Fixed costs include domain-specific content translation, language count, engine training frequency, and ongoing management expenses. Variable costs are tied to the annual translation volume. Essentially, MT customization costs go beyond the direct training fees, covering a spectrum of related activities and requiring a significant resource investment for comprehensive management.
Guidelines
How to use the MT cost calculator:
Whether you're an experienced MT user or new to estimating the cost of customized NMT, this tool is designed to help you compare MT solutions effectively. By breaking down various cost factors and providing insights per 1000 source words, you can make informed decisions about your MT strategy.
It is an active thinking process to check and ensure that you have included all relevant variables and costs in the calculator and that you estimate these realistically.
By inputting values for the above parameters, you'll receive detailed insights into the cost implications of utilizing customized MT solutions. This calculator lets you compare different MT approaches, assess their affordability, and make informed decisions aligned with your organization's translation needs and budget. Note that all costs are in USD. We do not store the data inserted into or produced by the calculator.
Input Parameters
The Calculator
Understanding Machine Translation Costs
Understanding MT costs is crucial for efficient resource allocation in language projects. Here's a breakdown of four typical cases as ballpark cost estimates:
Generic commercial MT engine, 10 million words/year, MT management ➔ USD 2,100 annual cost
Adaptive MT engine, 10 million words/year, MT management ➔ USD 6,000 annual cost
MT from LLM, 10 million words/year, MT management, prompting ➔ USD 8,000 annual cost
Customized MT, 10 million words/year, 2 domains, 10 languages ➔ USD 23,000 annual cost
These examples highlight the varying financial implications of different MT technologies, aiding decision-makers in optimizing budgets for translation processes.
Put the Calculator to Work For You!
It only takes a few minutes to plug in your specific numbers related to words processed, domains, languages, and more to generate a customized cost analysis. Don't keep these important findings to yourself – we highly recommend taking a screenshot of the output page to share with your boss or clients. Seeing an accurate financial projection based on your actual translation data will help gain their support for optimizing your MT strategy. Use Win+Shift+S on Windows / CMD+Shift+S+4 on Mac to take the snapshot of your calculation.
Exploring Alternatives to Customized MT
Adaptive MT
Adaptive MT revolutionizes machine translation with its agility and responsiveness, catering to dynamic linguistic demands. Unlike static systems, Adaptive MT swiftly adapts to evolving terminologies and styles, enhancing translation accuracy and fluency while aligning with changing business needs. Its continuous learning approach eliminates the need for frequent manual updates, streamlining workflows and boosting productivity.
Furthermore, Adaptive MT empowers users with unprecedented customization options, allowing for tailored translations that effortlessly meet specific project requirements. Through real-time feedback and integration with translation memories, linguists refine translations iteratively, ensuring consistent quality and alignment with evolving needs. This collaborative process fosters a culture of continuous improvement, where users actively shape MT outputs to suit their preferences, ushering in a new era of efficient and adaptive translation solutions.
Scalability through LLMs
Customized NMT requires separate models for each domain and language pair, which has scaling limitations. Additional issues of the traditional customization approach are:
The improvements of re-training on modern, well-established custom-trained systems are typically incremental.
The training process is more cumbersome than using LLMs out-of-the-box with in-context learning and prompt engineering.
The amount of effort for customized MT training is often underestimated. A large amount of language data needs to be collected, verified for relevance and quality, cleaned, and intensive training rounds perhaps with multiple iterations and evaluation checks take significant effort.
Today, LLMs provide a unified framework that could more easily support on-demand translation for new language pairs and content areas than building and maintaining many specialized NMT systems. You can instruct LLMs to do certain things while producing translations. The adaptation techniques are much more flexible. The exceptions would be specialized fields like Legal or Healthcare.
Making the complex simple: 5 ways of how to use MT today
Currently, there are five main ways to use machine translation. Each has its benefits and disadvantages, so let’s take a high-level look at them. For a more in-depth insight, our Enterprise Automated Translations - LLM or Neural MT article is a recommended read.
1. Generic NMT engines
The output quality from generic NMT engines can vary based on language pair, content type, MT engine, training data, and context. While popular engines like Google Translate, Microsoft Translator, and DeepL offer convenience, their translations may vary in accuracy and fluency. These engines utilize different algorithms and training data, impacting their performance, although features like glossaries create low-level modulation capabilities.
2. Customizable NMT engines
Customizable MT systems (such as Microsoft Custom Translator or Systran) offer tailored solutions to specific domains or industries, resulting in higher-quality translations than generic MT engines. Customized MT systems can better handle specialized terminology, nuances, and context by leveraging domain-specific training data and fine-tuning algorithms.
3. Adaptive NMT engines
Adaptive machine translation systems (such as LILT, ModernMT, and LanguageWeaver) dynamically adjust and improve their translation quality gradually over time—compared to the quarterly or annual retraining of customizable NMT—by learning from user feedback and corrections. These systems use advanced artificial intelligence and machine learning techniques on the fly to refine their models based on real-world usage data. Adaptive MT systems can deliver more accurate and contextually appropriate translations by adapting to users' specific preferences and language patterns.
4. LLMs
MT provided by LLMs represents a cutting-edge approach to language translation, leveraging advanced neural network architectures and vast amounts of pre-training data. LLMs excel in capturing complex linguistic patterns and nuances, yet their maturity level is still evolving. Due to their requirement for specific knowledge and contextual understanding, LLM-based MT should be utilized selectively.
5. Synergized LLMs and NMTs
The integration of LLMs and NMT in translation workflows is enhancing efficiency. Critical use cases enabled by LLMs—such as source optimization, machine translation quality estimation, and automatic post-editing—are becoming standard practices in innovative, integrated machine translation workflows.
It should be clear that there is no one-size-fits-all machine translation solution. Careful consideration of your specific translation goals, content, and budget is required. While generic engines provide a simple starting point, customized approaches can better optimize quality outcomes at the cost of… well, cost.
However, the translation landscape is constantly evolving. Hybrid methods leveraging the strengths of different technologies, like pairing LLMs with traditional MT, may unlock even greater potential. Adaptive systems also ensure your translation assets keep pace with changing needs.
Most importantly, expert guidance can help you navigate this complexity to extract maximum value from your MT investment. An effective strategy considers immediate and long-term requirements to support your workflows now and in the future.
Rather than viewing MT costs as expenses, see them as opportunities. Proper optimization streamlines translation processes, freeing up resources for your core business. Partners with a nuanced understanding of the latest techniques facilitate more informed choices in solutions and oversight.
As a trusted partner, Nimdzi is uniquely positioned to help your organization achieve translation excellence by using machine translation's full capabilities. Our assessment services determine the optimum mixture of technologies and management practices tailored to your unique context.
By working collaboratively, we ensure your MT deployment enhances global communication and supports your mission in a sustainable, scalable manner. Ultimately, the true success is how well language barriers dissolve to connect people worldwide through your essential messages and content.
由Jan Hofmeister和Roman Civin研究和撰写。
介绍
如果您被不同机器翻译(MT)选项和成本因素的所有信息所淹没,请不要紧张,我们已经为您准备好了。但不要只相信我们的话-使用方便的交互式计算器工具,根据您的独特需求分解成本。插入您的数字,并获得一个快速的自定义成本分析-使用可比的分母。
为了了解机器翻译的成本,让我们将其分解为简单的选项:
通用MT引擎易于使用,但质量各不相同。
传统上通过定期预培训定制的MT,根据您的业务俚语量身定制,可以提供更好的翻译,但前期成本更高。
自适应机器翻译会根据您的反馈随时间自动改进,比自定义引擎更灵活。
大型语言模型(LLM)是最前沿的,但仍然是新的,需要强有力的指导才能获得最佳效果。
将LLM与神经MT(NMT)相结合是实现最高效率的方法。
在为您的预算选择合适的机器翻译方法时,必须考虑固定和可变成本。如果出现更多问题,请不要犹豫,寻求Nimdzi的专家建议,以优化您的策略。
见解
传统的定制NMT由于其可扩展性的限制而面临挑战。自适应MT是当前的前沿。
公司在定制NMT上的花费往往比他们意识到的要多。
为了理解MT的成本影响,利益相关者必须考虑一系列固定和可变费用。
与定制NMT相关的复杂性只有在它无法被更新的解决方案取代的情况下才是合理的。
考虑固定成本和可变成本
解释MT引擎定制的成本涉及固定成本和可变成本。固定成本包括特定领域的内容翻译、语言计数、引擎培训频率和持续管理费用。可变成本与年度翻译量挂钩。从本质上讲,MT定制费用超出了直接培训费用,涉及一系列相关活动,需要为全面管理投入大量资源。
准则
如何使用MT成本计算器:
无论您是经验丰富的MT用户还是刚开始估算定制NMT的成本,此工具都可帮助您有效地比较MT解决方案。通过分解各种成本因素并提供每1000个源单词的见解,您可以对您的MT策略做出明智的决策。
这是一个积极的思考过程,检查并确保您已将所有相关变量和成本纳入计算器,并实际估算这些变量和成本。
通过输入上述参数的值,您将获得有关使用定制MT解决方案的成本影响的详细信息。此计算器可让您比较不同的MT方法,评估其可承受性,并根据组织的翻译需求和预算做出明智的决策。请注意,所有费用均为美元。我们不存储插入到计算器或由计算器产生的数据。
输入参数
计算器
了解机器翻译成本
了解机器翻译成本对于语言项目的有效资源分配至关重要。以下是四个典型案例的大致成本估算:
通用商用机器翻译引擎,1000万字/年,机器翻译管理每年费用2,100美元
自适应机器翻译引擎,1000万字/年,机器翻译管理每年6,000美元
从LLM开始的MT,1000万字/年,MT管理,每年费用约8,000美元
自定义MT,1000万字/年,2个域,10种语言每年费用23,000美元
这些例子突出了不同机器翻译技术的不同财务影响,帮助决策者优化翻译流程的预算。
让计算器为你工作!
只需几分钟即可插入与处理的单词、域、语言等相关的特定数字,以生成自定义的成本分析。不要把这些重要的发现留给自己--我们强烈建议你把输出页面的截图与你的老板或客户分享。根据您的实际翻译数据查看准确的财务预测将有助于获得他们的支持,以优化您的翻译策略。在Windows上使用Win+Shift+S/在Mac上使用CMD+Shift+S+4来拍摄计算快照。
探索定制MT的替代方案
自适应MT
自适应机器翻译以其灵活性和响应能力彻底改变了机器翻译,满足了动态的语言需求。与静态系统不同,自适应机器翻译能够快速适应不断变化的术语和风格,提高翻译的准确性和流畅性,同时满足不断变化的业务需求。其持续学习方法消除了频繁手动更新的需要,简化了工作流程并提高了生产力。
此外,Adaptive MT为用户提供了前所未有的定制选项,允许轻松满足特定项目要求的定制翻译。通过实时反馈和与翻译记忆库的集成,语言学家可以迭代地优化翻译,确保质量一致并与不断变化的需求保持一致。这种协作过程促进了持续改进的文化,用户积极塑造MT输出以满足他们的偏好,开创了高效和自适应翻译解决方案的新时代。
通过LLM实现可扩展性
定制的NMT需要为每个领域和语言对建立单独的模型,这具有扩展限制。传统定制方法的其他问题是:
在现代化的、完善的定制培训系统上进行再培训的改进通常是渐进的。
培训过程比使用LLM开箱即用的上下文学习和快速工程更麻烦。
定制MT培训的工作量往往被低估。需要收集大量的语言数据,验证相关性和质量,清理和密集的训练回合,可能需要多次迭代和评估检查。
今天,LLM提供了一个统一的框架,可以更容易地支持新语言对和内容领域的按需翻译,而不是构建和维护许多专门的NMT系统。你可以指导LLM在翻译时做某些事情。适应技术要灵活得多。例外情况是法律或医疗保健等专业领域。
让复杂变得简单:今天如何使用MT的5种方法
目前,使用机器翻译的主要方式有五种。每种方法都有其优点和缺点,所以让我们从高层次上来看看它们。要获得更深入的见解,推荐阅读我们的企业自动化翻译- LLM或神经MT文章。
1.通用NMT发动机
来自通用NMT引擎的输出质量可以基于语言对、内容类型、MT引擎、训练数据和上下文而变化。虽然像Google翻译,Microsoft翻译和DeepL这样的流行引擎提供了便利,但它们的翻译可能在准确性和流畅性方面有所不同。这些引擎使用不同的算法和训练数据,影响它们的性能,尽管词汇表等功能创建了低级别的调制功能。
2.可定制的NMT引擎
可定制的机器翻译系统(如Microsoft Custom Translator或Systran)为特定领域或行业提供量身定制的解决方案,从而实现比通用机器翻译引擎更高质量的翻译。定制的机器翻译系统可以通过利用特定领域的训练数据和微调算法来更好地处理专业术语、细微差别和上下文。
3.自适应NMT引擎
自适应机器翻译系统(如LILT、ModernMT和ModernWeaver)通过从用户反馈和更正中学习,随着时间的推移逐渐动态调整和提高其翻译质量,而不是按季度或按年度重新培训可定制的NMT。这些系统使用先进的人工智能和机器学习技术,根据真实世界的使用数据来改进模型。自适应机器翻译系统可以通过适应用户的特定偏好和语言模式来提供更准确和更适合上下文的翻译。
4.法学硕士
LLM提供的MT代表了一种先进的语言翻译方法,利用了先进的神经网络架构和大量的预训练数据。LLM擅长捕捉复杂的语言模式和细微差别,但其成熟度仍在不断发展。由于他们对特定知识和上下文理解的要求,基于LLM的MT应该有选择地使用。
5.协同的LLM和NMT
LLM和NMT在翻译工作流程中的集成提高了效率。LLMs支持的关键用例(如源优化、机器翻译质量评估和自动后期编辑)正在成为创新的集成机器翻译工作流程的标准实践。
应该清楚的是,没有一种通用的机器翻译解决方案。需要仔细考虑您的具体翻译目标、内容和预算。虽然通用引擎提供了一个简单的起点,但定制方法可以更好地优化质量结果,但代价是......嗯,成本。
然而,翻译领域在不断发展。利用不同技术优势的混合方法,如将LLM与传统MT配对,可能会释放更大的潜力。自适应系统还可确保您的翻译资产跟上不断变化的需求。
最重要的是,专家指导可以帮助您驾驭这种复杂性,从您的MT投资中获取最大价值。一个有效的策略会考虑当前和长期的需求,以支持您现在和未来的工作流程。
不要把MT成本看作是费用,而要把它们看作是机会。适当的优化可简化翻译流程,为您的核心业务释放资源。对最新技术有细致入微理解的合作伙伴有助于在解决方案和监督方面做出更明智的选择。
作为值得信赖的合作伙伴,Nimdzi具有独特的优势,可以通过使用机器翻译的全部功能来帮助您的组织实现卓越的翻译。我们的评估服务可根据您的独特环境确定技术和管理实践的最佳组合。
通过协同工作,我们确保您的MT部署能够增强全球沟通,并以可持续、可扩展的方式支持您的使命。最终,真正的成功是如何消除语言障碍,通过您的基本信息和内容将世界各地的人们联系起来。
以上中文文本为机器翻译,存在不同程度偏差和错误,请理解并参考英文原文阅读。
阅读原文