Must-Know AI Translation Terms for Business Leaders

商业领袖必备的AI翻译术语

2023-07-12 05:50 Lilt

本文共1109个字,阅读需12分钟

阅读模式 切换至中文

The AI translation space is an evolving industry that’s using new technologies and strategies as it continues to grow. It’s one that’s full of industry veterans from many departments that are helping to pave the way for future scale as well. However, since AI translation combines many disciplines into one, cohesive idea, it’s riddled with terms and phrases that aren’t always so obvious to understand. It can easily feel like your peers are having a conversation that you may not pick up. To help with that, we’ve compiled a list of the important terms in a simple and straight-to-the-point AI dictionary. Adaptive Engine Training This approach offers continuous training, eliminating the retrain/deploy cycle of custom engine training. The model is always trained on the most recent data and updates the deployed model’s parameters with each new training example. Lilt is a pioneer of this technology. Application Program Interface (API) An API is a piece of software that allows two applications to interact with each other. Computer Assisted Translation (CAT) Tool A CAT tool is one that’s built to help translators increase the speed and consistency at which they translate content. Some of the more popular features of a CAT tool include Translation Memories and Termbases. Connector A Connector is an integration that enables companies to send content from their existing systems to Lilt for simplified and optimized localization workflows. Allows for more automated, consistent localization. Content Management System (CMS) A CMS is a software tool that allows companies to create, edit, and publish website content more easily than traditional methods. Common CMS systems include WordPress, Contentful, and Drupal. Contextual AI Engine Artificial intelligence systems that can understand and interpret the context of a given situation or query to provide more relevant and accurate responses or outputs. Custom Engine Training Given a content-specific dataset, this approach tracks a model’s parameters once and deploys those parameters. If you want to train on one more example, you need to retrain the whole model and deploy it again. Customer Experience Customer experience is the entire experience that a customer may have with a company, from sales and marketing to customer support and product. A positive customer experience means that customer expectations are met at most (if not all) interaction points. Similarly, the customer journey is a progression of interactions that a customer or prospect may have with a company, service, or product. This journey often looks different depending on the company and customer and can often have an impact on customer experience. Few-Shot Prompting This technique involves adding training examples to the input of the deployed model, which also includes the text to be translated. The training examples influence the model’s output without adjusting the model’s parameters. Fine-Tuning This is a term specific to neural networks that is equivalent to adaptive engine training. It adjusts the model’s parameters for each new example. Fuzzy Matching Fuzzy Matching is the process where a CAT tool looks for segments inside of a Translation Memory with similar meaning and spelling. Fuzzy matches are often between 75-99% similar to an existing entry. Generative AI Generative AI is a type of artificial intelligence technology that can produce new content, including text, imagery, audio, and data. Global Experience (GX) Global Experience is the process of making a company’s customer experience multilingual and accessible by all customers and prospects, regardless of language or locale. Successful global experience consists of all internal teams aligning on global strategy. Globalization Globalization is the idea of bringing different countries and cultures together, whether separated by people, economies, or borders. Oftentimes, globalization is thought of as the umbrella goal that localization, internationalization, and translation all work to accomplish. Human Feedback The changes or acceptances of translation prompts. This feedback then enables the AI system to learn and adjust its behavior and output based on changing circumstances or new information from linguist feedback. Unlike MTPE, human feedback is learning in real-time and improves on its own with more feedback without the need to be retrained on data. In-Context Learning (ICL) Also known as LLM Fine-Tuning, ICL is a newer approach to translation that allows for rapid customization of a single model to a specific content type by updating the model's parameters with a constant stream of new training examples. Localization (l10n) Localization is the process of actually adapting to a specific locale or region. This often includes all visible pieces, like text and images, to make sure that they align with the culture. Machine Translation (MT) Machine translation is fully automated software that translates content from one language to another. Since a large portion of the world’s content is inaccessible to people that don’t speak the original source language, MT can effectively translate content faster and into more languages. Machine Translation Post-Editing (MTPE) Some companies use a translation approach called Machine Translation Post-Editing (MTPE), where content is translated using MT and then reviewed by human translators after the fact. While this workflow does cut costs, the quality is typically lower than human-in-the-loop machine translation or human-only translation. Natural Language Processing (NLP) NLP is a branch of artificial intelligence that focuses on allowing computers to understand language in a human way. It combines linguistics with technology to understand the meaning, context, and intent behind spoken and/or written language. Common examples of NLP include chatbots, speech-to-text software, digital assistants (like Alexa or Siri), and more. Terminology Management Terminology management is a process of researching, choosing, defining, updating, and maintaining key terms in the local language relevant to a business, product or service provider, or public or scientific institution. Translation Management System (TMS) A TMS is a software system that manages the localization process from start to end. More often than not, they’re meant to automate and streamline the localization workflow, making it easier to pass content back and forth for translation. Translation Memory (TM) A TM is a database that stores all previous translation segments. Those segments can then be used in future translations, saving time for translators, ensuring consistency for the brand, and saving costs for businesses. TM Leverage This is the term used to track and measure the frequency of TM use. The higher the leverage, the more often a TM is referenced in subsequent translations, likely providing faster turnaround and lower costs. New terms are still appearing, so it’s important to stay on top of the latest developments in the industry and work with a trusted AI translation partner.
人工智能翻译领域是一个不断发展的行业,随着它的不断发展,它正在使用新的技术和策略。这是一个充满了来自许多部门的行业资深人士,他们也在为未来的规模铺平道路。 然而,由于人工智能翻译将许多学科结合成一个有凝聚力的概念,因此它充满了术语和短语,这些术语和短语并不总是那么容易理解。它很容易让你觉得你的同龄人正在进行一场你可能听不懂的对话。 为了帮助实现这一点,我们在一个简单而直接的AI词典中编制了一个重要术语列表。 自适应发动机训练 这种方法提供了连续的培训,消除了自定义引擎培训的重新培训/部署周期。该模型总是在最新的数据上进行训练,并使用每个新的训练示例更新部署模型的参数。Lilt是这项技术的先驱。 应用程序接口 API是允许两个应用程序相互交互的软件。 计算机辅助翻译(CAT)工具 CAT工具旨在帮助翻译人员提高翻译内容的速度和一致性。CAT工具的一些更受欢迎的功能包括翻译记忆库和术语库。 连接器 连接器是一种集成,使公司能够将现有系统中的内容发送到Lilt,以简化和优化本地化工作流程。允许更加自动化、一致的本地化。 内容管理系统(CMS) CMS是一种软件工具,允许公司比传统方法更容易地创建,编辑和发布网站内容。常见的CMS系统包括WordPress,Contentful和Drupal。 情境AI引擎 可以理解和解释给定情况或查询的上下文以提供更相关和更准确的响应或输出的人工智能系统。 自定义引擎培训 给定一个特定于内容的数据集,这种方法只跟踪一次模型的参数并部署这些参数。如果你想再训练一个例子,你需要重新训练整个模型并再次部署它。 客户体验 客户体验是客户与公司的整个体验,从销售和营销到客户支持和产品。积极的客户体验意味着在大多数(如果不是全部)交互点上满足客户期望。类似地,客户旅程是客户或潜在客户可能与公司、服务或产品进行的交互的进展。这一过程通常因公司和客户的不同而不同,并且通常会对客户体验产生影响。 少镜头提示 该技术涉及将训练示例添加到部署模型的输入,其中还包括要翻译的文本。训练样本在不调整模型参数的情况下影响模型的输出。 微调 这是一个特定于神经网络的术语,相当于自适应引擎训练。它会为每个新示例调整模型的参数。 模糊匹配 模糊匹配是CAT工具在翻译记忆库中查找具有相似含义和拼写的段的过程。模糊匹配通常与现有条目的相似度在75-99%之间。 生成性AI 生成式AI是一种人工智能技术,可以生成新内容,包括文本,图像,音频和数据。 全球经验(GX) 全球体验是使公司的客户体验多语言化的过程,并且所有客户和潜在客户都可以访问,无论语言或地区如何。成功的全球经验包括所有内部团队与全球战略保持一致。 全球化 全球化是将不同的国家和文化融合在一起的想法,无论是由人民,经济或边界分开。通常,全球化被认为是本地化、国际化和翻译都要完成的总体目标。 人为反馈 翻译提示的更改或接受。然后,这种反馈使AI系统能够根据不断变化的环境或来自语言学家反馈的新信息来学习和调整其行为和输出。与MTPE不同,人类反馈是实时学习的,并通过更多的反馈自行改进,而不需要对数据进行重新训练。 情境学习(ICL) ICL也被称为LLM微调,是一种较新的翻译方法,它允许通过使用新训练示例的恒定流更新模型的参数来快速定制单个模型到特定内容类型。 本地化(l10n) 本地化是实际适应特定地区或区域的过程。这通常包括所有可见的部分,如文本和图像,以确保它们与文化保持一致。 机器翻译(MT) 机器翻译是完全自动化的软件,将内容从一种语言翻译成另一种语言。由于世界上很大一部分内容对于不会说原始源语言的人来说是无法访问的,因此MT可以更快地将内容有效地翻译成更多的语言。 机器翻译后期编辑(MTPE) 一些公司使用一种称为机器翻译后编辑(MTPE)的翻译方法,即使用MT翻译内容,然后由人工翻译人员在事后进行审查。虽然这种工作流程确实降低了成本,但质量通常低于人工在环机器翻译或人工翻译。 自然语言处理(NLP) NLP是人工智能的一个分支,专注于让计算机以人类的方式理解语言。它将语言学与技术相结合,以理解口语和/或书面语言背后的含义,上下文和意图。NLP的常见示例包括聊天机器人,语音转文本软件,数字助理(如Alexa或Siri)等等。 术语管理 术语管理是研究、选择、定义、更新和维护与业务、产品或服务提供商、公共或科学机构相关的本地语言关键术语的过程。 翻译管理系统(TMS) TMS是一个软件系统,它从开始到结束管理本地化过程。通常情况下,它们旨在自动化和简化本地化工作流程,使内容更容易来回传递以进行翻译。 翻译记忆库(TM) TM是存储所有先前翻译片段的数据库。这些细分可以在未来的翻译中使用,为翻译人员节省时间,确保品牌的一致性,并为企业节省成本。 TM杠杆 这是用于跟踪和测量TM使用频率的术语。杠杆越高,在后续翻译中引用TM的频率越高,可能提供更快的周转和更低的成本。 新术语仍在不断出现,因此,掌握行业的最新发展并与值得信赖的人工智能翻译合作伙伴合作非常重要。

以上中文文本为机器翻译,存在不同程度偏差和错误,请理解并参考英文原文阅读。

阅读原文