Which Machine Translation Provider is Best for Which Language Pair?

哪种机器翻译提供商最适合哪种语言对?

2020-09-12 04:00 Lingua Greca

本文共849个字,阅读需9分钟

阅读模式 切换至中文

Machine translation (MT), and post-edited MT have become increasingly popular, both with localization managers trying to speed up their software translation process, and with translators themselves. Since translators are often paid by the word, an increased output while maintaining high translation quality is always welcome. Phrase customers can use the Autopilot feature to translate new content automatically and set up a review process for manual post-editing by human translators. If you are managing your organization’s localization process in Phrase, you can define which machine translation provider is used for which language pair. That leaves the only question remaining: how do you choose the best MT provider for each language pair? In this article, we gathered information and recommendations that can help with this choice. Which Machine Translation Providers Offer Which Languages? How Do You Judge Machine Translation Provider Quality? Let Translators Evaluate Machine Translations Analyze Your Post-Editing Score Summary: How to Pick the Best MT Provider for Each Language Pair Next Step: Update Your Machine Translation Settings in Phrase Which Machine Translation Providers Offer Which Languages? (As of July 2020) DeepL: DeepL currently supports the following 11 languages: English, German, French, Spanish, Portuguese, Dutch, Italian, Polish, Russian, Japanese, and Chinese. See here. Amazon Translate: Currently available in 55 languages. See the complete list here. Microsoft Translator: Currently available in 74 languages. See the complete list here. Google Translate: Currently available in 109 languages. See the complete list here. How Do You Judge Machine Translation Provider Quality? Let’s imagine you are translating a language pair that is supported by all four machine translation providers. You still need to find out which service will provide the best results, meaning, which translations are semantically-correct, match your tone of voice, and are the fastest to post-edit for human translators. Unfortunately, there is no clear winner. There is no way to say that one language pair is always best translated by DeepL, Amazon, Microsoft, or Google Translate. Which machine translation provider delivers the highest quality strongly depends on your source copy: the vocabulary that is used (e.g. legal documents vs. marketing material, travel industry vs. logistics), the tone of voice (formal, informal), and other factors. Here are two suggestions for how to test your content with different MT providers. The first would be to let translators evaluate machine translations in a blind test. The second is to analyze your post-editing score. Let Translators Evaluate Machine Translations Prepare a set of test content from your product. Provide the source content and the machine translations from all available MT providers and let translators evaluate these translations in a blind test to determine which one provides the best basis for their post-editing process. We applied this method to evaluate MT providers for our own content on phrase.com. We asked our in-house translators for German, French, and Russian to rank the different machine translation results from their favorite to their least favorite results in a blind test. Here are our results: Analyze Your Post-Editing Score There are a wide range of approaches to calculating the quality of machine-translated content, BLEU, TER, and HTER to mention only a few. A rather simple one that you can apply in no time to your own content is the post-editing score method which measures the share of content that has been translated correctly and remained unchanged during post-editing. The higher the post-editing score, the higher the quality of the machine translation. Just compare the machine-translated copy with the post-edited, final copy and count the characters or words that were edited. There are several free tools (e.g., Diffchecker, countwordsfree) that you can use for this kind of text comparison and difference calculations. The share of edited content can be calculated either by characters or by word. We are referring to the post-editing score based on words in our examples. We calculated the post-editing score for our website content on phrase.com for the language pairs: English to German, English to French, and English to Russian. For our content and languages, the scores of the different MT providers are very close. As mentioned above, these results heavily depend on your source content. The post-editing scores for your content could look very different. Summary: How to Pick the Best MT Provider for Each Language Pair Check which MT providers are available for your language pair. If you work with internal translators or have a fixed-team of external translators, ask them to evaluate which MT provider they prefer. It is the translators who need to work with the machine-translated content, so adopting their preferred provider will save time for everyone. If you are working with a changing set of translators, calculate the post-editing score for your language pairs and choose the provider with the highest score. Next Step: Update Your Machine Translation Settings in Phrase Update your machine translation settings in Phrase according to your findings. Just add the language pairs and select the best-performing MT provider. Localization and translation workflow Machine translation Translation
无论是本地化经理试图加快软件翻译过程,还是译者本身的发展需要,机器翻译(MT)和机器翻译译后编辑变得越来越流行。由于译者经常按词付酬,因此始终在保持高质量翻译的同时提高输出量,该做法很受欢迎。 短语客户可以使用Autopilot功能自动翻译新内容,并设置审核流程以供人工译员手动编辑。 如果以短语形式管理组织的本地化过程,则可以定义将哪种机器翻译提供程序用于哪种语言对。剩下的唯一问题是:如何为每种语言对选择最佳的MT提供商?在本文中,我们收集了可以帮助进行此选择的信息和建议。 哪些机器翻译提供商提供哪些语言? 如何判断机器翻译提供商的质量? 由译员评估机器翻译 分析译后编辑得分 摘要:如何为语言对选择最好的机器翻译提供商 下一步:更新短语中的机器翻译设置 哪些机器翻译提供商提供哪些语言? (截至2020年7月) DeepL:DeepL目前支持以下11种语言:英语,德语,法语,西班牙语,葡萄牙语,荷兰语,意大利语,波兰语,俄语,日语和汉语。浏览此处。 亚马逊翻译:目前有55种语言版本。请在此查看完整列表。 微软翻译:目前有74种语言版本。请在此查看完整列表。 谷歌翻译:目前有109种语言版本。请在此查看完整列表。 如何判断机器翻译提供商的质量? 假设您正在翻译所有四个机器翻译提供商都支持的语言对。您仍然需要找出哪种服务将提供最佳结果、含义以及哪些翻译在语义上是正确的、与您的语调相匹配,以及对于人工翻译而言哪些是最快的译后编辑。 然而目前还未有明确的胜负之分。无法说明DeepL,亚马逊,微软或谷歌翻译对一种语言对翻译得最好。 哪个机器翻译提供商提供最高的质量在很大程度上取决于您的源文本:所使用的词汇(例如法律文件与营销材料,旅游行业与物流行业),语调(正式的,非正式的),以及其他因素。对于如何用不同的机器翻译提供商测试您的内容,这里提供两个建议。首先是让译员在盲测中评估机器翻译。 第二个是分析您的译后编辑分数。 由译员评估机器翻译 从产品中准备一组测试内容。提供源内容和所有可用的机器翻译提供商的机器翻译,让译员在盲测中评估这些翻译,以确定哪一个为其译后编辑过程提供了优质基础。 采用这种方法来评估机器翻译提供商对我们在phrase.com上内容的了解。我们要求德语,法语和俄语的内部翻译人员在盲测中对不同的机器翻译结果从最喜欢到最不喜欢进行排序。结果如下: 分析译后编辑得分 计算机器翻译内容质量的方法很多,仅举几个例子如BLEU,TER和HTER。一个可以立即应用到自己内容上比较简单的方法是译后编辑评分法,该方法可以衡量已正确翻译且在编辑后保持不变的内容所占的份额。译后编辑得分越高,机器翻译的质量就越高。 只需将机器翻译的副本与译后编辑最终副本进行比较,然后计算所编辑的字符或单词。您可以使用几种免费工具(例如Diffchecker,countwordsfree)进行此类文本比较和差异计算。 还可以按字符或单词来计算已编辑内容的份额。我们示例中指的是基于单词的译后编辑得分。 我们针对以下语言对(英语对德语,英语对法语和英语对俄语)在phrase.com上计算译后编辑得分。 对于我们的内容和语言,不同机器翻译提供商的得分非常接近。如上所述,这些结果很大程度上取决于于您的源内容。因此您的译后编辑内容得分可能看起来会非常不同。 摘要:如何为语言对选择最好的机器翻译提供商 检查哪些机器翻译提供程序可用于您的语言对。 如果您与内部译员合作或有固定的外部翻译团队,请他们评估自己喜欢的机器翻译提供商。恰好是译员需要处理机器翻译的内容,因此采用他们首选的提供者可以为每个人节省时间。 如果您使用的译员数量有所变化,请计算好语言对的译后编辑分数,然后选择得分最高的提供商。 下一步:更新短语中的机器翻译设置 根据发现,更新短语中的机器翻译设置。 只需添加语言对并选择性能最佳的机器翻译提供商即可。 本地化和翻译工作流程 机器翻译 翻译

以上中文文本为机器翻译,存在不同程度偏差和错误,请理解并参考英文原文阅读。

阅读原文