How to Leverage Machine Translation for Your Business

如何利用机器翻译为你的事业服务

2020-08-01 23:41 Lingua Greca

本文共1344个字,阅读需14分钟

阅读模式 切换至中文

Machine translation (MT) has become a common aspect of many people’s daily lives. Some websites offer automatically translated content. Thousands of videos are posted each day, and video platforms auto-extract subtitles and translate them on demand. If you are well familiar with the process of localization, you are aware of MT but weary of its shortcomings. Here, we will suggest safe and useful ways to include MT in your localization projects. Quality of Machine Translation Using Machine Translation in Your Translation Projects History of Machine Translation Systems Machine Translation Engines in Phrase Is Machine Translation a Security Problem? Does Machine Translation Make Humans Superfluous? Efficient Translation Workflows with Machine Translation Quality of Machine Translation Machine translation engines have become astonishingly good. Consumers of multilingual content find themselves querying an online translation tool rather than reaching for the good old dictionary. Speech-enabled mobile or home devices allow us to ask for quick translations without typing anything. However, examples of shoddy translations abound, and “this looks like machine translation” is one of the most common complaints from translation buyers. There is also no denying that machine translation engines rarely reach the quality of professional human translators. When quality translations are the desired result, it is thus vital to at least involve human editors. Furthermore, all translation engines show varying strengths with different language pairs. Thus, several engines may come into play in multilingual projects and you are well-advised to spend some time selecting the best engine for each language pair. Using Machine Translation in Your Translation Projects You may be familiar with the concept of translation memories – databases of source language sentences paired with the corresponding expressions in the target language. When translators work on your content in a translation management system, such as Phrase, they get existing translations offered for every source phrase found in the database. This saves time and effort for the translator and increases consistency. As soon as the translator encounters new text, machine translation can be a useful productivity tool. The translator would start with a translation provided by an MT engine via Phrase’s Autopilot. If only minor edits are required, this can be more efficient than translating from scratch. Notice the hedges “if” and “can” – in many instances, translators will insist that they can translate faster than they can edit questionable output from machine translation engines. Thus, if you want to try using MT for actual translations, involve the translators in test runs and let them choose the engine that produces the most promising results for them. And then – be sure to leave further decisions on actual translation issues up to them. History of Machine Translation Systems The earliest machine translation engines were so-called rule-based machine translation (RBMT) systems. These used hand-crafted language patterns (linguistic “rules”) with carefully compiled dictionaries (“lexicons”) to convert source-language sentences into target-language equivalents. The output quality was underwhelming overall because any grammatical construction that did not neatly fit a rule in the system would predictably lead to failure. And since languages are ever-evolving, they are a moving target for makers of RBMTs who need to define an explicit language model to succeed. Statistical machine translation (SMT) systems aimed to overcome these difficulties by analyzing large compilations of bilingual text (“corpora”) and automatically extracting correspondences. Instead of using linguistically informed algorithms to generate translations, SMTs gave their best guess on snippets of text. Since pure statistical approaches often resulted in awkward or ungrammatical formulations, machine translation vendors created hybrid machine translation (HMTs) engines. These used linguistic rules to form grammatical output sentences from the pieces supplied as best guesses from the statistical module. While such hybrid systems may have improved on the quality somewhat, they inherited the cost from both underlying types of systems: large corpora for the statistical component plus sophisticated linguistic models for the rule-based one. The best translation systems today are based on neural network technology (a.k.a. “artificial intelligence”). These neural machine translation (NMT) systems maintain the benefit of statistical systems because neural networks find statistical regularities in text corpora (the “training data”). But instead of relying on manually created language rules, these systems also use neural networks to discover grammatical patterns. This means that new neural machine translation engines can be created relatively quickly and cheaply – you compile a useful collection of texts (NMT engines often do not even need bilingual corpora) and “train” the networks. Machine Translation Engines in Phrase Phrase recognizes the potential for time and cost savings through machine translations without forgetting about the pitfalls. Therefore, it offers multiple engines that you can select in your Account Settings. The best-of-breed machine translation services available in Phrase are: Amazon DeepL Google Microsoft When you test these engines, you may find that DeepL outperforms the others, but it is only available for a relatively limited number of languages. And you may determine that Google is best for German, Microsoft is strongest for Arabic, while Amazon can handle Portuguese best. Therefore, you have the opportunity to select a specific engine for each language in Phrase, unless you are happy to stick with the default Microsoft Translate. Apart from helping out the translator, machine translation also has other uses in Phrase. With Autopilot, you can generate quick pretranslations for your whole translation project. Thus, you can immediately get a very good idea of what your content may look like when it is translated. Even if a human translator will later provide some modifications, you will be able to assess beforehand whether all needed text is properly exposed to translation, translations are likely to fit in your layout, your software still functions as expected. Pseudotranslation is sometimes used for this purpose, where text is replaced with foreign-looking gobbledigook. At Phrase, we believe that it is more useful to work with realistic text. If translators prefer to look at sentences without pretranslation, Autopilot would be turned off. In that case, translators can still benefit from machine translation by using SmartSuggest – machine translation on demand. With a quick glance, the translator can here decide to use or discard a machine-translated item. Is Machine Translation a Security Problem? On the web, you can find many articles warning of confidentiality issues posed by using online translation tools. Such problems may well exist with freely available web translators. However, Phrase uses cloud-based engines that have security built in – encrypted data transfer and data separation per customer – to make sure that none of your data would leak out into the web. Does Machine Translation Make Humans Superfluous? Clearly, no. The best machine translation engines may come close to human translators under ideal circumstances, but even such tools cannot possibly match a translator who thinks along. A good translator does not only provide fluent output but can also determine whether a piece of text makes sense in its context. In a functioning translation team, you may receive queries from translators that prompt you to rewrite your English source text. When a translator has trouble understanding what your text says, it could be poorly written or altogether wrong. No machine translation engine can give you feedback on style, logic, or appropriateness. Efficient Translation Workflows with Machine Translation In Phrase, your localization project could go like this: You internationalize your software, You push text resources to Phrase, You receive machine translations from Phrase’s Autopilot at minimal to no cost without delay, You evaluate the effects of translating on your software (go back to step two if needed), Humans translate with machine translation as a productivity aid, You receive human quality translations. Thus, machine translation gives you valuable information before a translator touches the content. And while human translators work on your text, machine translation speeds up the process with suggestions. Thus, machine translation delivers crucial efficiencies that help you stay within your budget and meet your deadlines. All without foregoing the quality that you need to serve your foreign target markets. Localization (l10n) Localization and translation workflow Translation Translation management system (TMS)
机器翻译已经成为许多人日常生活的一部分。一些网站提供自动翻译的内容。每天有成千上万的视频被发布,视频平台自动提取字幕并按需翻译。如果你很熟悉本地化的过程,你就会意识到MT,但会厌倦其缺点。在这里,我们将为你在本地化项目中加入MT提供安全和有用的建议。 机器翻译质量 在翻译项目中使用机器翻译 机器翻译系统的历史 Phrase机器翻译引擎 机器翻译是安全问题吗? 机器翻译会让人类变得多余吗? 利用机器翻译实现高效的翻译工作流程 机器翻译质量 机器翻译引擎已经变得非常出色。使用多语种内容的消费者发现他们在查询在线翻译工具,而不是去查阅优质的旧词典。具有语音功能的移动或家用设备使我们无需输入任何内容就可以要求快速翻译。然而,劣质翻译的例子比比皆是,“这看起来像机器翻译”是翻译客户最常见的抱怨之一。 此外,不可否认的是,机器翻译引擎很少能达到人类专业译者的水平。当高质量的翻译是期望的结果时,至少要让至关重要的人工编辑参与。此外,对于不同的语言对,所有翻译引擎显示出不同的优势。因此,在多语言项目中,可能会有多个引擎发挥作用,建议您花费一些时间为每种语言对选择最佳引擎。 在翻译项目中使用机器翻译 你可能熟悉翻译记忆库的概念——源语言句子与目标语言对应表达的数据库。当翻译者在翻译管理系统(例如短语)中处理您的内容时,他们会为在数据库中找到的每个源短语提供现有的翻译。这为译者节省了时间和精力,并提高了一致性。 一旦译者遇到新的文本,机器翻译就会成为有用的提高效率的工具。翻译人员将从MT引擎通过短语的Autopilot提供的翻译开始。如果只需要少量的修改,这比从头翻译更有效。注意“如果”和“可以”——在很多情况下,译者会坚称他们的翻译速度比他们编辑机器翻译引擎的可疑输出要快。因此,如果您想尝试使用MT进行实际翻译,请让翻译人员参与测试运行,并让他们选择能够为他们产生最有希望结果的引擎。然后——确保让他们在实际的翻译问题上做出进一步的决定。 机器翻译系统的历史 最早的机器翻译引擎是所谓的基于规则的机器翻译(RBMT)系统。它们使用手工编写的语言模式(语言“规则”)和精心编译的词典(“词典”)将源语言的句子转换为目标语言的对等词。总的来说,输出的质量不佳,因为任何不完全符合系统规则的语法结构都可能导致失败。而且由于语言是不断发展的,所以它们是rbmt制造商的移动目标,他们需要定义一种明确的语言模型才能取得成功。 统计机器翻译(SMT)系统旨在通过分析大量的双语文本(“语料库”)和自动提取对应信息来克服这些困难。 SMT不是使用基于语言的算法来生成翻译,而是对文本片段给出他们最好的猜测 由于纯统计方法经常导致笨拙或不合语法的表达,因此机器翻译供应商创建了混合机器翻译(HMT)引擎。这些程序使用语言规则,从统计模块提供的最佳猜测中形成语法输出句子。虽然这种混合系统可能在某种程度上提高了质量,但它们继承了两种底层系统的成本:用于统计组件的大型语料库以及基于规则的系统的复杂语言模型。 当今最好的翻译系统是基于神经网络技术(又名“人工智能”)的。这些神经机器翻译(NMT)系统保持了统计系统的优势,因为神经网络可以在文本语料库(“训练数据”)中找到统计规律。但是这些系统并不依赖于人工创建的语言规则,而是使用神经网络来发现语法模式。这意味着可以相对快速和廉价地创建新的神经机器翻译引擎——您可以编译有用的文本集合(NMT引擎通常甚至不需要双语语料库)并“训练”网络。 Phrase机器翻译引擎 Phrase识别通过机器翻译节省时间和成本的潜力,而不会忘记缺陷。因此,它提供了多个引擎,您可以在您的帐户设置中选择。 短语中提供的同类最佳的机器翻译服务如下: 亚马逊 深层 谷歌 微软 当您测试这些引擎时,您可能会发现DeepL优于其他引擎,但仅适用于相对有限的几种语言。你可能会认为谷歌最适合德语,微软最适合阿拉伯语,而亚马逊最适合葡萄牙语。因此,您有机会为每一种语言在Phrase中选择特定的引擎,除非您愿意坚持使用默认的Microsoft Translate。 除了帮助译者,机器翻译在Phrase方面还有其他用途。使用Autopilot,您可以为整个翻译项目生成快速预翻译。因此,您可以立即清楚地了解内容在翻译时的样子。即使人工翻译稍后将提供一些修改,您也可以事先评估是否 所有需要的文本都经过适当的翻译, 翻译可能会适合你的布局, 您的软件仍按预期运行。 为了达到这个目的,有时会使用伪翻译,即文本被替换成外国的官样文章。在Phrase上,我们认为以现实的文本进行工作更为有用。 如果翻译员喜欢看没有预翻译的句子,则会关闭Autopilot。在这种情况下,翻译人员仍然可以通过使用SmartSuggest(按需机器翻译)从机器翻译中获益。通过快速浏览,翻译人员可以在这里决定使用或丢弃机器翻译的项目。 机器翻译是安全问题吗? 在web上,您可以找到许多关于使用在线翻译工具带来的保密问题的警告文章。免费的网络翻译器很可能存在这样的问题。然而,Phrase使用了内置安全的云引擎——加密数据传输和每个客户的数据分离——以确保你的数据不会泄露到网络上。 机器翻译会让人类变得多余吗? 很明显,没有。在理想的情况下,最好的机器翻译引擎可能会接近于人类翻译者,但即使是这样的工具也不可能与一个深思熟虑的翻译者相匹配。一个好的译者不仅能提供流畅的输出,还能决定一篇文本在其上下文中是否有意义。在功能强大的翻译团队中,您可能会收到来自翻译人员的查询,提示您重写英语源文本。当翻译人员无法理解您的文字内容时,可能会写得不好或完全错了。没有任何机器翻译引擎可以给你提供关于风格、逻辑或适当性的反馈。 利用机器翻译实现高效的翻译工作流程 简而言之,您的本地化项目可以是这样的: 您的软件将国际化, 将文本资源推送到Phrase, 您可以从Phrase的Autopilot中免费获得机器翻译,而无需花费任何时间,几乎可以免费完成, 您评估翻译对软件的影响(如果需要,请返回第二步), 人类利用机器翻译作为辅助手段进行翻译, 你会收到人工的翻译。 因此,在翻译人员接触内容之前,机器翻译就为您提供了有价值的信息。当人工翻译在您的文本上工作时,机器翻译会通过提供建议加快这个过程。因此,机器翻译提供了至关重要的效率,帮助您保持在预算之内,并满足您的期限。 所有这些都不放弃你为国外目标市场服务所需的质量。 本地化(l10n) 本地化和翻译工作流程 翻译 翻译管理系统

以上中文文本为机器翻译,存在不同程度偏差和错误,请理解并参考英文原文阅读。

阅读原文