How to Improve SaaS Metrics with Localization

如何用本地化改进SaaS(软件即服务)指标

2020-07-24 23:42 Lingua Greca

本文共2142个字,阅读需22分钟

阅读模式 切换至中文

Localization is a global growth enabler for any software as a service (SaaS) business. It’s easy to see why. Customers strongly prefer to use software in their native language. Often, companies try to make a business case by calculating a theoretical return on investment (ROI) for localization. If you work at a SaaS company, I suggest you reframe the discussion. Don’t get lost in a conversation about ROI. Instead, focus on which SaaS metrics you can impact with localization. Use SaaS Metrics to Drive Growth with Localization Localization is a growth lever. It helps unlock global growth. So why use SaaS metrics to help inform decisions about localization? A few reasons: ROI alone won’t paint an accurate picture. SaaS companies and their metrics are complex. This is why so many localization ROI exercises fail. They are too simplistic. They usually look something like, “If we spend X to localize Y, how much new revenue (Z) can we obtain?” The answer to Z is not dependent just on whether you localize, but on many other factors, including sales, marketing, and logistics. And, investment at a SaaS company always comes at an opportunity cost. You can always be investing in other things to drive growth. Revenue isn’t the only thing that matters. Looking at revenue potential is fine, but in a SaaS business, that’s not the only metric that matters. The type of growth that is desirable in SaaS depends on many other metrics and how they relate to each other. New growth is great! But not at all costs. Retaining that revenue is incredibly important for a SaaS business. The customer acquisition cost (CAC), and their lifetime value (LTV), also matter hugely. And, how these metrics play alongside net new annual recurring revenue (NN ARR), install base (IB) growth, and other key SaaS metrics matters too. You’ll already have everyone’s buy-in. At a SaaS company, your core SaaS metrics and unit economics are what you live and breathe every day. No matter what else is going on amidst the flurry of growth at your business, these are the metrics you’ll always come back to. Your entire company and your operating system are built around these metrics. Your strategies and priorities will often be focused on improving these metrics. They are your anchor, your true North. So, if you want to get attention for localization and use it to help your company go global, take the discussion beyond total addressable market (TAM). Look beyond just ROI. Center people’s attention on how localization can impact your core SaaS metrics instead. How to Structure Your Data If you want to drive focused growth at a SaaS company, you’ll need to clarify how localization can impact your top-line revenue. (This is true whether you’re a localization manager or someone driving international growth from within another function.) To do this, I suggest using a data structure that covers six primary data cuts: Global. All countries globally. Domestic. Your HQ country. International. All countries except your HQ country. English. All countries whose primary language is English. Non-English. All countries whose primary language isn’t English. Localized. All countries whose languages you support other than English. You can actually use these metrics at any global technology company, even if its not a SaaS company. Standardize on Country to Prevent Data Problems Later A common thread in all of the data cuts? They depend on country. Country is the ultimate base component to use when you’re creating your data structure. All other cuts are roll-ups that hinge on the country base unit. Once you have this in place, you’ll be able to slice and dice your data in a number of different ways. As you scale, you cannot properly analyze your SaaS metrics for international purposes without doing so at the country level. Here’s why: Country trends hide within geo-level data. A geo like “EMEA” is going to mask trends related to a single country in your data. Knowing what % of revenue comes from each country is critical, even in early days, so that you can fully understand what your data is saying and how to make improvements. Nearly every time I’ve seen an “unexpected trend” in a geo-level metric, it’s just one or two countries driving it. Sometimes, it’s just one customer in one country that can shift a metric for an entire geo. Knowing which country is driving a geo-level trend can help you pinpoint the problem. Language data needs to map to country. Once you have country in place, you can assign a “primary language” field to country. (You can later do a “secondary language” field if you want to get fancy, to show there is some uplift from a market for which some of the population speaks a language). Currency matters too. You’ll eventually need to map currencies to country fields, and you really cannot do this unless you have country as a primary field in all of your data. You might not be accepting many currencies today, but you’ll likely want to later as you grow and get bigger. If there is one critical thing you need to do early on to enable smart decisions for international growth later on in a SaaS business, it’s this: What happens if you don’t get a standard country list in place early on? You’ll have to pay humans to either write code or manually de-dupe country fields, re-mapping them to geos and sub-geos, and fixing a problem that has grown a thousand-fold. Trust me, you don’t want to be the one trying to consolidate country fields that say “the United Kingdom,” “united kingdom,” “United Kingdom,” “UK,” “U.K.,” “Great Britain” and countless other variations, times 200 countries, many years from now. Notes on Base Language I’m assuming most readers of this blog will have a base language of English. However, if your base language isn’t English, but rather a language of another large market, like say, German, simply swap “English” for “German” and “Non-English” for “Non-German,” for example. If you’re in a smaller market where English is not your HQ country language but you’re primarily targeting English-speaking markets (for example, you’re a SaaS company in Finland), I suggest you still orient the data around English, since that is likely where most of your revenue will come from. Applying the Cuts to SaaS Metrics Once you’ve built out this data structure, you can apply the cuts to any SaaS metrics you choose. Here’s an example of what this would look like in the context of one of the most commonly used SaaS metrics, monthly recurring revenue (MRR): Let’s explain the example in the chart and why these cuts matter in the MRR context above a little further: International + domestic = global. Your international/domestic split is a two-way split of your global MRR. This helps you spot whether your international MRR is having an outsized impact on global MRR compared to domestic MRR. English + non-English = global. Your English/non-English MRR is also a two-way split of your global revenue. Your English MRR includes your domestic MRR in this example. This helps you spot whether there are any trends between non-English markets and English-speaking markets. Localized revenue = a % of your non-English and Global revenue. Non-English revenue is, in turn, a % of your global revenue. This can help you understand how the revenue coming from markets for which you have localized are driving improvements on the non-English revenue and thus, the international and global totals. I also sometimes refer to this as “supported language revenue,” because the depth of localization can vary from one language to another. Note: If you’re new to this topic and want more details on SaaS metrics in general, I highly recommend reading SaaS Metrics 2.0 from Matrix Partners. Other Data Cuts to Consider There are a few other cuts you can consider, especially as revenue grows. Once you get into more markets and are more advanced, evaluate whether you need the following: Developed + Emerging = Global. I’ve also used splits for Developed/Non-English vs. Developed/English, and Emerging/Non-English vs. Emerging/English as two other cuts that are useful in some cases. Whether or not you need that cut really depends on several factors. First, it depends on how many markets you are targeting simultaneously. Second, it depends on their share of your IB. Third, it depends on whether you actually have any differentiated strategies (pricing, packaging, go-to-market) for Emerging versus Developed markets. International/English + International/Non-English = International. This will basically allow you to take English out of the equation to see how trends in these two different types of markets might be affecting your international revenue, no matter the sub-geo. Domestic/English + Domestic/Non-English = Domestic. This matters more if your HQ is in a market that covers multiple languages. For example, let’s say you’re a Canadian company with your product in French and English. Or, a US-based company selling to Spanish and English speakers. You might want to consider a domestic language split like this one. Localized + Non-localized = Non-English. You can also divide up the revenue from non-English markets into the ones for which you localize as compared to the ones for which you don’t. Sometimes, this can help you spot opportunities where localization might be a deciding factor between two similar markets that can help influence a given metric. EMEA + APAC + LatAm + NAM = Global. This is the top-level “Geo” structure most SaaS companies use to create sales territories to begin with. These are your traditional top-level international business metrics. You’ll want to look at these too! But, while these are helpful, don’t make the mistake of relying exclusively on these for analysis of your SaaS metrics. If you do, you can’t identify opportunities for localization to impact your metrics as easily. Also, you’ll quickly find that you’re masking important trends across languages (English vs. non-English). One note on how to treat Canada, one of my pet “low-hanging fruit” markets that many US-based companies overlook. Canada usually falls into “NAM” (North America) or gets lumped under “Americas.” However, for financial reporting purposes alone, you’ll need to bucket Canadian revenue as International if you’re based in the US. But this is important for other reasons too. Remember, data from Canada should always be targeted and analyzed separately from the US market. Don’t treat it like a 51st state, or you will most certainly overlook its potential for growth and impact. How Localization Fits Into the SaaS Metrics Picture Now, let’s take a look at how you can use these standard data cuts for international and localization, as applied to some other SaaS metrics. This will give you a sense of the types of trends that these different data cuts enable you to see. Here is an example of a fictitious SaaS company with $150M in ARR globally. In this example, a few things stand out: LTV:CAC ratio is best in International markets, and ones for which localization has already taken place are the highest globally. Perhaps your CAC was high in the early days when you made most of your localization investments, and now costs have gone down considerably, so you’re getting more leverage for localization from shared global resources. Revenue retention also looks highest in these same markets, driving up the global average. This might be a sign that your past investments in localization are paying off, and that you should consider following a similar approach for other non-English markets. Domestic market LTV:CAC isn’t as high. Perhaps the cost to acquire companies is higher in the company’s domestic market, or there is more competition than in international markets. This might be a sign that more investment should go into international markets where metrics are promising, while you work to fix the problems in your domestic market. Retention is troublesome in non-English markets. Why? Perhaps the lack of proper support for these markets means that the NN ARR is high, but the retention is poor. Also, the CAC might be high, because perhaps the salespeople addressing these markets are sitting primarily in an expensive office location. Maybe the LTV is poor because people are churning out due to a local competitor who offers their solution in-language, while you have not yet localized for that market. Using Country and Language-Level SaaS Metrics Now, this is where things get interesting.
本地化是任何软件即服务(SaaS)业务的全球增长推动因素。原因显而易见。客户强烈倾向于使用他们母语的软件。通常,公司试图通过计算本地化的理论投资回报(ROI)来实现商业案例。如果您在SaaS公司工作,我建议你重新组织讨论。不要在有关投资回报率的谈话中迷失方向。相反,应该关注本地化可以影响哪些SaaS指标。 使用SaaS指标标准通过本地化推动增长 本地化是一个增长杠杆。它有助于开启全球增长的大门。那么为什么要使用SaaS指标来帮助进行本地化决策呢?有几个原因: 单靠ROI并不能描绘出准确的图景。SaaS公司及其指标都很复杂。这就是为何如此多的本地化ROI测试失败。它们均过于简单化,通常看起来如这般:“如果我们花费X来本地化Y,我们能获得多少新收入(Z) ?”Z的答案不仅取决于你是否本地化,还取决于许多其他因素,包括销售、市场营销和物流。而且,投资SaaS公司总是要付出机会成本的。你可以投资于其他领域来推动增长。 收入并不是唯一重要的。 考虑收入潜力是不错的,但在SaaS业务中,这并不是唯一重要的指标。 SaaS中所期望的增长类型取决于许多其他度量以及它们之间的关系。 新的增长很棒!但不是不惜一切代价。对于SaaS业务来说,保持这种收入是非常重要的。 客户获取成本(CAC)和他们的终身价值(LTV)也非常重要。此外,这些指标如何与净新增年度经常性收入(NN ARR)、安装基数(IB)增长以及其他关键的SaaS指标一起发挥作用也很重要。 你已经得到了所有人的支持。在SaaS公司,你的核心SaaS指标和单位经济效益是每天再熟悉不过的东西。在你的业务快速增长的过程中,不管还发生了什么,这些都是你总会回到的指标。你的整个公司和操作系统都是围绕这些指标构建的。你的策略和优先事项通常将集中于改进这些指标标准。他们是你的锚、你的正北方向。 所以,若你想让本地化获得关注,并利用本地化帮助你的公司走向全球,那就不要只讨论完全可寻址市场(TAM),不要只看投资回报率,而是将人们的注意力集中在本地化如何影响你的核心SaaS指标上。 如何构建数据结构 如果想推动一家SaaS公司的集中增长,你需要弄清楚本地化如何影响你的收入。(无论你是本地化经理还是就职于其他职能部门推动国际增长的人,这点都是正确的。) 为此,我建议使用包含六个主要数据切割的数据结构: 全球的。 全球所有国家。 国内的。 你总部所在的国家。 国际的。 除总部所在国家以外的所有国家。 英语。 以英语为主要语言的所有国家。 非英语。 所有主要语言不是英语的国家。 本地化。除英语外,你所支持的其他语言的所有国家。 实际上,你可以在任何一家全球性技术公司使用这些指标,即使它不是一家SaaS公司。 对国家进行标准化以防止以后出现数据问题 在所有的数据切割中都有一个共同的线索? 它们取决于国家。 国家是创建数据结构时要使用的最终基础组件。所有其他的削减都取决于国家基本单位。一旦你有了这个,就可以用很多不同的方法对数据进行切分。随着规模的扩大,如果不在国家一级对SaaS指标进行国际分析,就无法对SaaS指标进行正确的国际分析。原因如下: 国别趋势隐藏在地理层面的数据中。 像“EMEA”这样的geo会在你的数据中掩盖与一个国家相关的趋势。了解每个国家的收入占比是至关重要的,即使在早期也是如此,这样你就可以完全理解你的数据在说明什么,以及如何做出改进。几乎每次我在地缘级别的度量中看到一个“意外趋势”,都是一两个国家在推动。有时,某个国家的某位客户就可以改变整个GEO的指标。了解哪个国家在推动地缘趋势,可以帮助你找出问题所在。 语言数据需要映射到国家。一旦确定了国家,就可以为国家指定一个“主要语言”字段。(如果想变得更完美,你可以之后做一个“第二语言”的领域,以显示有一部分人会说一种语言的市场有所提升)。 货币也是关键。 你最终需要将货币映射到国家/地区字段,除非你在所有数据中都将国家/地区作为主要字段,否则确实无法做到这一点。现在可能很多货币你不接受,但以后随着成长和规模扩大,你可能需要去接受。 在早期阶段,如果有哪件关键的事情是你需要做的,以便在以后的SaaS业务中做出明智的国际增长决策,那就是: 如果你没有尽早得到一个标准的国家名单,会发生什么呢? 你必须付钱给人,让他们编写代码,或者手动取消国家字段,将它们重新映射到GEO和子GEO,并修复一个已经愈发棘手的问题。 相信我,很多年后你不会想去试图合并国家字段的。这些国家字段例如:“英国”,“联合王国”,“联合王国”,“英国”,“大不列颠”和无数其他变体,还要考虑200多个国家。 基本语言注释 我预设这个博客的大多数读者都能基本掌握英语。 然而,如果你的基本语言不是英语,而是另一个大市场的语言,比如德语,那么就简单地把“英语”换成“德语”,把“非英语”换成“非德语”。 如果在一个较小的市场,英语不是你总部国家的语言,但你主要针对的是讲英语的市场(例如,你是芬兰的一家SaaS公司),我建议你还是把数据定位在英语,因为这可能是你大部分收入的来源。 将削减应用于SaaS指标 一旦构建了这个数据结构,就可以将削减应用到你选择的任何SaaS度量。下面举个例子,说明每月经常性收入(MRR)在最常用的SaaS指标之一的上下文中是什么样子的: 让我们进一步对图表中的例子进行解释,以及为什么这些削减在上述MRR背景下很重要: 国际+国内=全球。你的国际/国内拆分是你全球MRR的双向拆分。这有助于发现,与国内MRR相比,你的国际MRR对全球MRR的影响是否过大。 英语+非英语=全局。 您的英语/非英语MRR也是您全球收入的双向分割。 在本例中,您的英语MRR包括您的国内MRR。 这有助于你发现非英语市场和英语市场之间是否存在任何趋势。 本地化收入=非英语和全球收入的百分比。反过来,非英语收入占全球收入的百分比。 这可以帮助你了解来自你本地化市场的收入是如何推动非英语收入的提高,从而推动国际和全球总收入的提高。我有时也把这称为“支持的语言收入”,因为本地化的深度可能因不同的语言而异。 注意:如果你是这个主题的新手,并且想要更多关于SaaS度量的详细信息,我强烈建议你阅读Matrix Partners的SaaS Metrics2.0。 需要考虑的其他数据削减 你还可以考虑其他一些削减措施,尤其是在收入增长的情况下。 一旦你进入的市场更多、更先进,评估一下你是否需要以下几点: 发达国家+新兴市场=全球。我还使用了“发达/非英语”和“发达/英语”,“新兴/非英语”和“新兴/英语”这两种划分方式,这在某些情况下是有用的。你是否需要削减实际上取决于几个因素。首先,这取决于你同时瞄准了多少市场。第二,这取决于它们在你的投资业务中所占的份额。第三,这取决于你是否有针对新兴市场和发达市场的差异化战略(定价、包装、进入市场)。 国际/英语+国际/非英语=国际。这基本上可以让你把英语从等式中去掉,看看这两种不同类型的市场的趋势如何影响你的国际收入,不管是什么次级地理位置。 国内/英语+国内/非英语=国内。如果你的总部位于一个涵盖多种语言的市场,这一点就更重要了。例如,假设你是一家加拿大公司,产品有法语和英语两种语言。或者,一家总部设在美国的公司,销售给讲西班牙语和英语的人。 你可能需要考虑像这样的国内语言分割。 本地化+非本地化=非英语。你也可以把来自非英语市场的收入分成那些你本地化的市场和那些你不本地化的市场。有时,这可以帮助你发现机会,本地化可能是两个类似市场之间的一个决定性因素,可以帮助影响给定的度量。 EMEA+APAC+LatAm+NAM=全球。这是大多数SaaS公司用来创建销售区域的顶层“GEO”结构。 这些是你传统的顶级国际业务度量标准。你也会感兴趣的! 但是,尽管这些都很有帮助,但不要犯这样的错误,即完全依赖这些来分析SaaS指标。如果这样做了,就不易确定本地化的机会来影响指标。 而且,你很快就会发现你掩盖了跨语言(英语与非英语)的重要趋势。 关于如何对待加拿大的一个注意事项。加拿大是我钟爱的“低挂水果”市场之一,但许多美国公司都忽视了加拿大。加拿大通常被归为“NAM”(北美)或被归为“Americas”。“然而,仅出于财务报告的目的,如果你的总部设在美国,你需要将加拿大的收入归入国际范围。 但出于其他原因,这一点也很重要。记住,来自加拿大的数据总是要有针对性的,与美国市场分开分析。不要把它当作第51个州,否则你肯定会忽略它的增长潜力和影响。 本地化如何融入SaaS指标图 现在,让我们看看如何将这些标准数据削减用于国际化和本地化,就像应用于一些其他SaaS指标一样。不同的数据削减使你能够看到趋势类型,这将使你对趋势类型有一种感觉。 下面是一个虚构的SaaS公司的例子,其全球ARR为1.5亿美元。 在这个例子中,有几件事很突出: LTV:CAC比率在国际市场是最好的,已经实现本地化的市场是全球最高的。 在早期进行大部分本地化投资时,你的CAC可能很高,而现在成本已大幅下降,因此你从共享的全球资源中获得了更多本地化的杠杆。 同样在这些市场,收入保持率看起来也是最高的,从而推高了全球平均水平。这可能是一个迹象,表明你过去在本地化方面的投资正在获得回报,你应该考虑在其他非英语市场采用类似的方法。 国内市场客户终生价值LTV(Life Time Value):用户获取成本CAC(Customer Acquisition Cost)没有那么高。 也许在公司的国内市场上收购公司的成本更高,或者比在国际市场上竞争更多。这可能是某一迹象,表明在你努力解决国内市场问题的同时,更多的投资应该投向国际市场,因为国际市场的指标很有前途。 在非英语市场,保留客户是件棘手的事情。为什么?也许对这些市场缺乏适当的支持意味着NN ARR很高,但保留率很低。此外,用户获取成本可能很高,因为可能这些市场的销售人员主要坐在一个昂贵的办公地点。客户终生价值很差,可能是因为当地的竞争对手用语言提供解决方案,而你还没有针对那个市场进行本地化,所以人们大量生产。 使用国家和语言级别的SaaS指标 现在,事情变得有意思起来了。

以上中文文本为机器翻译,存在不同程度偏差和错误,请理解并参考英文原文阅读。

阅读原文