MT Post-Editing Boosts Swiss Bank’s Translation Productivity by Up to 60%, Study Finds

研究发现, 译后编辑提高了瑞士银行的翻译效率高达60%

2019-07-24 05:00 slator

本文共675个字,阅读需7分钟

阅读模式 切换至中文

A fast-growing cohort of midsize translation buyers has followed more sophisticated large buyers in implementing machine translation post-editing (PEMT), either through their LSPs or directly via an API in their translation management system (TMS). Academia has also increasingly shown interest in quantitative research on the impact of ever tighter human-machine interaction in language translation. A recent study, led by Samuel Läubli, examined the impact of PEMT on the productivity of a small team of translators in the field of banking and finance. Läubli is a PhD candidate at the University of Zurich, CTO of TextShuttle, and a previous speaker at SlatorCon. Researchers ran the study using domain-adapted neural machine translation (NMT) with the in-house translation team of Migros Bank based in Zurich, Switzerland. Migros Bank is the banking arm of Switzerland’s largest retailer, Migros, and operates across the country’s German-, French-, and Italian-speaking regions. The bank runs 67 branches, employs over 1,300 staff and, in 2018, generated a profit of CHF 204m (USD 205m). In 2016, Migros Bank decided to reduce the work farmed out to language service providers (LSPs), bringing back in-house more of its approximately 2 million words in annual translation volume. The bank built a small internal translation team of 2.8 full-time staff and rolled out translation management system Across. Initially, the plan was for the internal team to cover about 60% of the translation workload. According to Läubli, however, that grew to 80% thanks to the deployment of PE(N)MT. Läubli et al. went about to “empirically test how the inclusion of NMT, in addition to domain-specific translation memories and termbases, impacts speed and quality in professional translation of financial texts.” The study found that “even with language pairs that have received little attention in research settings and small amounts of in-domain data for system adaptation, NMT post-editing allows for substantial time savings and leads to equal or slightly better quality.” Four translators of the bank participated in the study, two for each language pair. In each language pair, there were two experimental conditions: one was translation memory (TM)-only and the other was PEMT — that is, translators were editing NMT output. In the first set, translators had access to a domain-specific TM, a domain-specific termbase, and any online service (except machine translation) in a translation environment they were used to. In the second, they had access to all of it as well, except that sentences with no fuzzy match of at least 80% in the TM were run through the NMT engine. In the German into French language combination, the average speed achieved per hour was 585 and 934 words in TM-only and post-edited respectively; an increase of nearly 60%. For reference, a good portion of Slator readers polled on PEMT speed concurred that around 1,000 words per hour was a realistic hourly output. The difference was less marked with Italian as a target language, with 453 and 495 words per hour produced in TM-only and post-edited respectively; a 9% increase in speed. In one of the texts provided for translation into French, the maximum speed achieved with PEMT was 1,237 words per hour, as opposed to 683 words per hour with TM-only. For Italian, the maximum speed in post-edited was 648 words, and 553 words in TM-only. Three out of four translators were faster on average using PEMT. Quality was reviewed on five parameters: coherence, cohesion, grammar, style, and cultural adequacy. Overall, in French, there was no difference in quality between texts produced with and without NMT. In Italian, texts translated with MT received slightly higher scores. Cohesion was found to be better in texts produced without MT in both French and Italian. The research provides no conclusive explanation as to why results were better with French as the target language. One possible reason mentioned is the German to Italian engine was trained with less in-domain material than the German to French one. Chantal Amrhein, Patrick Düggelin, Beatriz Gonzalez, Alena Zwahlen, and Martin Volk were Läubli’s co-researchers.
快速增长的中型翻译买家群体跟随更复杂的大型买家实施机器翻译后编辑( PEMT ),无论是通过他们的 LSP 还是直接通过原料药(API)在他们的翻译管理系统( TMS )。 学术界对语言翻译中日益紧密的人机交互影响的定量研究也越来越感兴趣。 Samuel L ä publi 领导的一项最近的研究考察了 PEMT 对银行和金融领域一小批翻译人员生产率的影响。L ä pun 是苏黎世大学的博士候选人、 TextShuttle 的 CTO 和 SlatorCon 的前任发言人。 研究人员与位于瑞士苏黎世的 Migros Bank 内部翻译团队一起使用领域自适应神经机器翻译( NMT )进行了这项研究。Migros Bank 是瑞士最大的零售商 Migros 的银行部门,在德国、法国和意大利各地开展业务。该行拥有67家分行,员工超过1300人,2018年实现利润2.04亿瑞士法郎(2.05亿美元)。 2016年, Migros 银行决定减少向语言服务提供商( LSP )提供的工作,在其每年约200万字的翻译量中,将更多的工作带回内部。 银行组建了一支由2.8名专职员工组成的内部翻译团队,全面推行翻译管理体系。最初,计划由内部团队承担大约60%的翻译工作量。然而,据 L ä pui 说,由于部署了 PE ( N ) MT ,这一比例增长到了80%。 L ä pun 等人。接着,“实证检验了除了特定领域的翻译记忆和术语基础之外, NMT 的加入如何影响金融文本专业翻译的速度和质量。” 研究发现,“即使对于在研究环境中几乎没有受到关注的语言对和用于系统适应的少量领域内数据, NMT 的后期编辑也能节省大量时间,并能带来同等或稍好的质量。” 该银行的四名翻译参加了这项研究,每对语言有两名。在每个语言对中,有两个实验条件:一个是翻译记忆( TM ),另一个是 PEMT ——也就是说,翻译人员正在编辑 NMT 输出。 在第一组中,翻译人员可以访问特定于领域的 TM 、特定于领域的术语库,以及在翻译环境中使用的任何在线服务(机器翻译除外)。在第二种情况下,他们也可以访问所有的内容,除了没有模糊匹配至少80%的 TM 句子是通过 NMT 引擎运行的。 在德语和法语的语言组合中,每小时平均速度分别为585和934个纯 TM 单词和后编辑单词,增长了近60%。为了供参考,在对 PEMT 速度进行调查的 Slator 读者中,有很大一部分认为每小时约1000个单词是一种现实的每小时输出。 这种差异较少以意大利语为目标语言,每小时产生453个和495个词,分别以纯 TM 和后编辑方式产生;速度增长了9%。 在提供翻译成法文的文本中,使用 PEMT 达到的最大速度为每小时1237字,而不是仅使用 TM 的每小时683字。对于意大利人来说,后编辑的最大速度是648个单词,仅 TM 的最大速度是553个单词。四个笔译员中有三个人平均使用 PEMT 的速度更快。 从五个方面对质量进行了评估:一致性、凝聚力、语法、风格和文化充分性。总体而言,在法语中,有无 NMT 的文本在质量上没有差别。在意大利,用 MT 翻译的文本得分略高。在没有 MT 的文本中,在法语和意大利语中, Cohesion 被发现更好。 这项研究没有提供确切的解释,为什么结果更好的法语作为目标语言。其中一个可能的原因是,德国对意大利的发动机训练的领域内材料比德国对法国的少。 Chantal Amrhin 、 Patrick D ü ggelin 、 Beatriz Gonzalez 、 Alena Zwahlen 和 Martin Volk 是 L ä pun 的共同研究员。

以上中文文本为机器翻译,存在不同程度偏差和错误,请理解并参考英文原文阅读。

阅读原文