Earlier this year, India surpassed China as the world's most populous country with 1.4 billion people spread across 28 states, each with its own regional languages and variations. India also achieved the second-fastest economic growth globally, ranking among the top 5 economies. For global organizations, India is a crucial market, but they face challenges in expanding due to language barriers. Many Indians speak English, but business efficiency requires local languages, and regulations may demand it in some sectors. This leads to the need for content localization and translation in India, which is complex due to numerous languages, reliability issues, and subpar quality standards.
In this session, I'll discuss how enterprises and global Language Service Providers (LSPs) can overcome these challenges. I'll use case studies to explore
(1) Do’s and don’t for localizing content and doing business in India
(2) How to leverage processes, mechanisms and incentives to meet TAT and quality expectations from linguists in an unstructured market like India
(3) Role of AI for Indian languages touching upon where its applicable and where its not
今年早些时候,印度超过中国成为世界上人口最多的国家,拥有14亿人口,分布在28个邦,每个邦都有自己的地区语言和变体。印度也实现了全球第二快的经济增长,位列前五大经济体。对于全球组织来说,印度是一个至关重要的市场,但由于语言障碍,他们在扩张方面面临挑战。许多印度人会说英语,但商业效率需要当地语言,某些行业的法规可能会要求使用当地语言。这导致印度需要内容本地化和翻译,由于语言众多、可靠性问题和低于标准的质量,这很复杂。
在本次会议中,我将讨论企业和全球语言服务提供商(LSP)如何克服这些挑战。我将使用案例研究来探索
(1)在印度本地化内容和开展业务的注意事项
(2)在印度这样的非结构化市场中,如何利用流程、机制和激励措施来满足语言学家对TAT和质量的期望
(3)人工智能在印度语言中的作用,涉及它在哪里适用,在哪里不适用
以上中文文本为机器翻译,存在不同程度偏差和错误,请理解并参考英文原文阅读。
阅读原文