AI Services for Life Sciences Companies

面向生命科学公司的人工智能服务

2024-09-03 12:36 lionbridge

本文共890个字,阅读需9分钟

阅读模式 切换至中文

AI services for life sciences companies have revolutionized the industry. AI’s emergence challenges the traditional ways of content creation, processing, and translation that have been used since the 1990s, when ICH harmonization was introduced to drug development. The industry is seeking new best practices for applying AI in life sciences documentation and life sciences language services, especially: Controlling risks Driving large-scale benefits To remain competitive in the industry, Lionbridge recommends drug sponsors seriously explore the opportunities for AI services for life sciences companies. This blog series covers medicinal drug product life cycle stages from a content and language-focused perspective. We share guidance for effectively and safely applying LLMs for regulated product translations. Our initial blog addressed the pre-market stage. Read on to uncover more about a new drug’s launch stage. AI Services for Life Sciences Companies: Pharma Product Launches Launching a new medicinal drug on the market is initiated long before the actual launch date. Medicines are typically introduced to the market via a carefully crafted plan tailored to target market conditions, reimbursement policies, and territory-specific pricing conditions. A pharma product launch strategy has several elements to ensure readiness for the market and stakeholders. Some essential aspects of commercial launch excellence are: Key Opinion Leader (KOL) programs with advisory board consultations and events where trust is built around the product and the influence of Key Opinion Leaders. These programs and events can benefit product promotion and prescribing patterns. Training programs for all employees involved in a product launch, ensuring they understand the product and its competitors. Data integration to enable adjustments of launch programs and ensure the product meets expectations. Patient engagement to capture patient feedback, inform marketing, and launch campaigns with patient perspectives. Performance metrics to enable oversight and evaluation of marketing and communication strategies. Social media strategy for dissemination to a broad audience and garnering valuable feedback. Language Strategy AI Services for Life Sciences Companies Early engagement can secure a strong global communication platform for a new drug in its initial marketing stage. Our initial blog pointed to the Target Product Profile (TPP). The TPP is often created in the early drug development stages to outline the desired commercial drug profile. A drug sponsor should involve payers and patient representatives as the TPP is being developed. The sponsor should be clear on the drug’s key endpoints and value proposition. Launching a drug product is a complex process. Stakeholders are multilingual, and the patient journey is complex. The Deloitte Center for Health Solutions states that end-to-end strategic planning is essential to a successful product launch. According to the report, a third of all drugs launched in a five-year period in the US failed to meet market expectations during their first year. Around 70% of products missing expectations at launch will continue to underperform. Unmet medical needs drive product performance. However, communication and stakeholder engagement also play a central role in product adoption, conversion, and positioning. A language and localization strategy should be part of a global product launch strategy. This additional strategy will ensure product messaging is accurate, consistent, and tailored to different markets and customer segments, including: Patients Caregivers Physicians Payers Institutional buyers The language strategy should include more than translations. It needs to account for nuances in style, terminology, and readability. All these items help accommodate different stakeholders and communication contexts. Opportunities and Challenges with Language AI for Launch Excellence AI should be considered an option for facilitating language outcomes during launch execution. This will be safe and effective if risks are controlled and the content used for launch communication is set up in appropriate language workflows. Large Language Models can benefit global launch programs, especially if language assets are leveraged from pre-market stage. This not only optimizes language service execution during launch, but also enables language consistency in the product positioning. The messaging and commercial positioning of the drug product starts taking shape during the investigational drug’s development and the evolution of clinical data, documentation, and labeling claims. Setting up a life cycle AI language strategy from the pre-market stage enables transfer of language assets from R&D to the launch stage. It also drives efficiencies and cost savings. Critically, it can help solve challenges of inconsistent product messaging that may arise from siloed pharma enterprise structures and a lack of transition of language assets from pre-market to launch stage. Beyond cost-savings, these are the key opportunities of AI: Translation and language service efficiencies Ability to process large content volumes in support of simultaneous multiregional launch programs Leveraging language assets from pre-market stage to obtain language consistency in positioning and narratives for the product Social media listening to capture sentiment and reputation forming around the product at launch AI-powered multilingual eLearning for training programs for different employee groups Readability testing for plain language content intended for patients, caregivers, and other non-technical stakeholders Get in touch Need pharmaceutical translation services? Ready to harness AI and Life Sciences localization services for your drug development life cycle? Lionbridge has decades of experience providing life sciences content translation and solutions for every touchpoint in your journey, including AI and life sciences language solutions. Let’s get in touch. To unsubscribe and find out how we process your personal information, consult our Privacy Policy.
为生命科学公司提供的人工智能服务已经彻底改变了这个行业。人工智能的出现挑战了自20世纪90年代以来一直使用的内容创建、处理和翻译的传统方式,当时ICH协调被引入药物开发。该行业正在寻求将人工智能应用于生命科学文档和生命科学语言服务的新最佳实践,特别是: 控制风险 推动大规模效益 为了保持行业竞争力,Lionbridge建议药品赞助商认真探索为生命科学公司提供人工智能服务的机会。 本博客系列从内容和语言的角度涵盖了医药产品生命周期的各个阶段。我们分享有效和安全地将LLM应用于受监管产品翻译的指南。我们最初的博客讨论了上市前阶段。继续阅读,了解更多关于新药上市阶段的信息。 面向生命科学公司的人工智能服务:医药产品发布 新药的上市早在实际上市日期之前就已启动。药品通常通过精心制定的计划引入市场,该计划针对目标市场条件,报销政策和特定地区的定价条件。制药产品发布战略有几个要素,以确保为市场和利益相关者做好准备。商业发射卓越的一些基本方面是: 关键意见领袖(KOL)计划,包括咨询委员会咨询和活动,围绕产品和关键意见领袖的影响力建立信任。这些计划和活动可以有利于产品推广和处方模式。 为参与产品发布的所有员工提供培训计划,确保他们了解产品及其竞争对手。 数据集成,以调整发布计划并确保产品符合预期。 患者参与,以获取患者反馈,为营销提供信息,并从患者的角度发起活动。 绩效指标,以便监督和评估营销和沟通战略。 向广大受众传播和收集宝贵反馈的社会媒体战略。 面向生命科学公司的语言策略人工智能服务 早期参与可以为处于初始营销阶段的新药提供强大的全球沟通平台。我们最初的博客指向目标产品简介(TPP)。TPP通常在早期药物开发阶段创建,以概述所需的商业药物概况。随着TPP的制定,药物申办者应该包括付款人和患者代表。申办者应清楚药物的关键终点和价值主张。推出一种药品是一个复杂的过程。利益相关者是多语言的,病人的旅程是复杂的。 德勤健康解决方案中心指出,端到端的战略规划对于成功推出产品至关重要。根据该报告,在美国五年内推出的所有药物中,有三分之一在第一年未能达到市场预期。大约70%的产品在推出时没有达到预期,将继续表现不佳。未满足的医疗需求推动产品性能。然而,沟通和利益相关者的参与也在产品采用、转换和定位中发挥着核心作用。语言和本地化战略应该是全球产品发布战略的一部分。这一额外的战略将确保产品信息准确、一致,并针对不同的市场和客户群量身定制,包括: 患者 照顾者 医生 付款人 机构买家 语言战略不应只包括翻译。它需要考虑风格、术语和可读性方面的细微差别。 所有这些项目都有助于适应不同的利益相关者和沟通环境。 语言人工智能带来的机遇和挑战 AI应被视为在发布执行期间促进语言结果的一种选择。如果风险得到控制,并且在适当的语言工作流程中设置用于发布沟通的内容,则这将是安全有效的。大型语言模型可以使全球发布计划受益,特别是如果从上市前阶段就利用语言资产。这不仅优化了发布期间的语言服务执行,还实现了产品定位的语言一致性。在研究药物的开发以及临床数据、文件和标签声明的演变过程中,药品的信息传递和商业定位开始形成。从上市前阶段开始制定生命周期人工智能语言战略,使语言资产从研发阶段转移到发布阶段。它还可以提高效率和节省成本。重要的是,它可以帮助解决产品信息不一致的挑战,这些挑战可能来自孤立的制药企业结构,以及缺乏从上市前到发布阶段的语言资产过渡。除了节省成本,这些是AI的关键机会: 翻译和语文服务效率 能够处理大量内容,以支持多区域同步发布计划 利用上市前阶段的语言资产,在产品定位和叙述中获得语言一致性 社交媒体倾听,以捕捉发布时围绕产品形成的情绪和声誉 人工智能驱动的多语言电子学习,为不同的员工群体提供培训计划 针对患者、护理人员和其他非技术利益相关者的普通语言内容的可读性测试 取得联系 需要医药翻译服务?准备好将人工智能和生命科学本地化服务用于您的药物开发生命周期了吗?Lionbridge拥有数十年的经验,可为您的旅程中的每个接触点提供生命科学内容翻译和解决方案,包括人工智能和生命科学语言解决方案。让我们联系吧。 要取消订阅并了解我们如何处理您的个人信息,请参阅我们的隐私政策。

以上中文文本为机器翻译,存在不同程度偏差和错误,请理解并参考英文原文阅读。

阅读原文